ECE 513 HW4 Arpad Voros

1. (a) Given the range of n, where n = 0,1,..., % — 1, z(n) has the following symmetric

property

x(n+ g) = —z(n)

And X (k) is defined as

Nl ]2 k %_1 j2 k Nl j2 k
X (k) = z(n)e” "N = z(n)e” "N Z z(n)e™"
n=0 n=0 n==4

2

Calculation of X (k) can be reduced to the range of n =0 — & — 1, as follows

N_q N _q
3 j2mnk 3 N j2m(nt+ L)k
X(h) = 3 alme ¥ + X aln+ e
n=0 n=0
N
g _ j2mnk N _ize(mt+fk
= Z z(n)e” "N +x(n+ 5)3 — =~

n=0

And due to the symmetric property of z(n) outlined at the beginning

j2m(n+ 4k

j2m(n+ 4k

=Y a(n) {e—”?v"" —e TN ]

_ j2nmnk s _ j2mnk
= a:(n)[e N — e Imhe N}

and since even harmonics of X (k) are represented by even values of k, e ™7™ will
always be 1, meaning

|
Keven(k) = Y an) [ 55 = (1)
n=0
|
= z(n) x 0
n=0
Xeven(k) =0
(b) Given X (k) from (a)
51 _
X(k) = 3 al) [om 55— eimiem 2
n=0
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we can determine that the odd harmonics of X (k) are when k is odd. So, e=™* will
always be -1, meaning

41
j2rnk _ j2wnk
Xoda(k) = Z x(n) {e‘ N —(=1)e }
n=0
1 |
= Z 2x(n)eiﬂm}C
n=0
And if Y(m), the N/2-point DFT of y(n), is equivalent to odd harmonics of X (k),
then
31 -1
j2nnm j2nnk
Y(m) = y(ne” "8 = Z 2z(n)e” "N , kmod2=1
n=0 n=0

Since k can only be odd, we can replace it with (2m + 1) to keep the identity
equivalent and reduce variables

5-1 N
Y(m) = Y yln)e™ 55 = 37 2n(n)e” T
n=0 "0
¥- N _
5 —1 . -1 o
= Z y(n)em v = Z 2z(n)e” “F " e R
n=0 "0

j2rnm

47 can be reduced to 27 in the right-side complex exponential, resulting in e~~~
being factored out

N _q N_q
2 2 j2mn
Yoy = Y 2z(n)e ¥
n=0 n=0

If we assume element-wise equivalence, we get one solution for y(n), being

j2xn N
y(n)zQaz(n)e_zT, n:0,17...,5—1
I(TL) = {Sa Oa _13 2}
y(’ﬂ) = {17 57 4a 72}

Let’s say the circular convolution of x(n) and y(n) equals z(n)

(a)
20)=> {3x1, 0x-2, -1x4, 2x5}=9

2(1) =) {3x5, 0x1, -1x-2, 2x4} =25
2(2) =) {3x4, 0x5, -1x1, 2x-2}=7

23) =) {3x-2, 0x4, -1x5, 2x1}=-9
z(n) =49, 25, 7, —9}
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(b) Verification of part (a) in MATLAB, using ££ft() and ifft ()

o

% 2 part b

o\°

init x(n) and y(n)

= [30—-12];
= [15 4 =2];
% use fft() and ifft() to compute circular convolution of x and y

ccirc = ifft (fft(x).*fft(y));
disp(ccirc);

© ® N o oA W N e
X

>> ccirc =

9 25 7 -9

The results are equivalent to those found in part (a).

(¢) Computing the linear convolution of z(n) and y(n) using MATLAB

o\

% 2 part c

o

init x(n) and y(n)

= [3 0 -1 2];
[1 54 =2];
% use conv() to compute linear convolution of x and y
clin = conv(x, y);

© W N U A W N e
<X
Il

disp(clin);

>> clin =

3 15 11 -9 6 10 -4

(d) Computing the linear convolution of z(n) and y(n) using MATLAB fft() and

ifft ()

1 %% 2 part d

2

3 % init x(n) and y(n)

4 X [30—-121;

5 y = [154 =2];

6

7 % pad x and y with appropriate 0's, both be length N
8 % where N = length(x) + length(y) —1

9 xpad = [x, zeros(l, length(y) — 1)1;

10 ypad = [y, zeros(l, length(x) — 1)1;

11

12 % use fft() and ifft() to compute linear convolution of x and y
13 clin_eq = ifft (fft (xpad).*»fft (ypad));

14 disp(round(clin_eq));
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>> clin_eq =

3 15 11 -9 6 10 -4

The results are equivalent to those found in part (c).
3. (a) Input sequence z(n) from sampdata.m

sampdata, xn, plotted

magnitude

0 50 100 150 200

Figure 1: Stem plot of sampdata

(b) Created 32 coefficient FIR filter, as given in homework:

300

1 %% 3 part b

2 order = 32;

3 ws = 0.749;

4 wc = 0.85xws;

5 F = [0.0 we ws 1.0];

6 A = [1.0 0.95 0.01 0.07];
7 b = firpm(order, F, A);

(c) Plotting magnitude and phase response to filter b made in (b)

1

%% 3 part c
2 freqgz(b);
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Figure 2: Magnitude and phase response of filter b

(d) Using MATLAB conv to calculate y1, output of filter when input x(n) is applied

1 %% 3 part d
2 yl = conv(xn, b); % where xn = sampdata
3 stem(yl);

x(n) * 32 coeff FIR filter

magnitude

0 50 100 150 200 250 300
sample

Figure 3: y1, the convolution of input and FIR filter, plotted using stem
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(e) Similar to 2 (d), we will be performing linear convolution of the input sequence and
the filter using IDFT and DFT algorithms provided by MATLAB

1 %% 3 part e
2 % appropriate padding, so N =Q + M — 1
3 xn.pad = [xn, zeros(l, length(b) — 1)1;
4 b_pad = [b, zeros(l, length(xn) — 1)1];
5
6 % linear convolution using ifft/fft, then plotting
7 y2 = ifft (fft(xn_pad).*fft (b_pad));
8 stem(y2);
x(n) * 32 coeff FIR filter, using ifft/fft
6 T T T T T

magnitude

0 50 100 150 200 250 300
sample

Figure 4: y2, the convolution of input and FIR filter, plotted using stem

(f) Calculate the absolute difference between y1 and y2. Should be very small

1 %% 3 part £
2
3 stem(abs(yl — y2));
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magnitude of difference
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Figure 5: Absolute difference between y1 and y2

4. Given X (k) is the DFT sequence of z(n), calculate the DFT sequences of z.(n) and zs(n)
in terms of X (k), where

and

471']6‘0%

xc(n):x(n)cos< ) 0<n<N-1

4’/TkoTL

xs(n)x(n)sin< ) 0<n<N-1

First z.(n),

jamkgn jamkgn
TN

xe(n) = %x(n) [e N

1 i2mkg)n 1 i2m(=2kg)n
= §z(n e ¥ 4+ EI(R)e N

reln) = Xe(k) = 5 X (k ~ 2ho) + 3 X (k + 2ko)

Similarly,

1 jamkgn jamkgn
zs(n) = —a(n) [e N —e¢ N }
S 2]
1 j2m(2kg)n 1 j2m(—2kg)n
=—z(n)e ¥ — —z(n)e ~
2j 2j

2a(n) = X, (k) = %X(k ~ 9ky) — %X(k + 2ky)
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5. There are 31912 samples of a speech audio waveform, given by @, and we wish to use the
overlap-save method filtering procedure with an FIR filter with 130 coefficients, given by
M. N is restricted to a power of 2.

(a)

Without using the overlap-save method, the sampled speech and FIR filter must
be linearly convoluted, which implies 0-padding. And since N must be a power
of 2, N > Q + M — 1 = 32042. The closest power of 2 is 2'° = 32768 = N.
The number of complex multiplications is given by N2, meaning there must be 239
complex multiplications performed when applying the FFT algorithm.

Number of complex multiplications required using the overlap-save method with
block size of 512 samples.

The number of complex multiplications for the overlap-save method with any given
block size is given in the following form

Nmait = B[2N 1ogy(N) + N| 4+ N logy(N)

where N is now the block size, in samples, and B is the number of blocks. The
number of blocks is determined by

_ Q
b= {N—M—i—lw

B_ 31912 _ 4
512 -131+1

In our case,

So that
Tt = 841024 log, (512) + 512] + 512log, (512) = 821760

Number of complex multiplications required using the overlap-save method with
block size of 1024 samples.

Similar to (b),
31912
b= {1024— 131+J =30
So that

Nomute = 36[2048 log, (1024) + 1024] + 1024 log, (1024) = 784384

Number of complex multiplications required using the overlap-save method with
block size of 2048 samples.

Similar to (b) and (c),
31912
b= {2048— 131+J =17
So that

Nt = 17[4096 log, (2048) + 2048] + 2048 log, (2048) = 823296

There seems to be a minimum of this non-differentiable f(N,Q, M), meaning that
optimizing the overlap-save is certainly possible. Though an analytical method of
finding the minimum would prove to be difficult, numerical methods can easily cal-
culate the minimum of the function, and thus the optimal block size that results in
the least complex multiplications. For our values of @) and M, the ideal block size
would be 970.



